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Universal renormalization-group dynamics at the onset of chaos in logistic maps
and nonextensive statistical mechanics
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We uncover the dynamics at the chaos thresholdm` of the logistic map and find that it consists of trajec-
tories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs form
,m` . We corroborate this structure analytically via the Feigenbaum renormalization-group~RG! transforma-
tion and find that the sensitivity to initial conditions has precisely the form of aq exponential, of which we
determine theq index and theq-generalized Lyapunov coefficientlq . Our results are an unequivocal valida-
tion of the applicability of the nonextensive generalization of Boltzmann-Gibbs statistical mechanics to critical
points of nonlinear maps.
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Critical points of nonlinear maps offer a suitable pla
ground for testing the validity of the nonextensive gener
zation of the Boltzmann-Gibbs~BG! statistical mechanics
proposed by Tsallis over a decade ago@1,2#. Here we de-
scribe universal properties related to the dynamics of iter
at the onset of chaos in unimodal maps@3#, which provide a
literal confirmation of the generalized nonextensive theo
To this end we employ the celebrated one-dimensional lo
tic map, f m(x)512muxu2,21<x<1, and the properties o
its renormalization-group~RG! fixed point, to present evi-
dence of previously unexposed scaling properties at the o
of chaosm5m` . At this state, the most prominent of th
map critical points, the trajectories of the iterates exhibit
intricate structure, that we describe and show is governed
the Feigenbaum RG transformation@3#.

The domain of validity of BG statistical mechanics h
been implicitly challenged by the proposal of its nonexte
sive generalization. Subsequent studies have offered ex
mental and numerical evidence that point out both the in
equacy of the standard BG statistics and the plaus
competence of the generalized theory in describing vari
types of phenomena and systems. This theoretical deve
ment represents an exceptional event in the long and tr
worthy history of BG statistical mechanics. However, it
still in the process of being converted into a rigorously c
roborated and fully understood fact. The suggested circ
stances under which the generalized theory is believed t
applicable, at least with regards to nonlinear dynamical s
tems, are those associated to a phase space with powe
sensitivity to initial conditions, to the consequent vanishi
of the largest Lyapunov exponent, and to a fractal or mu
fractal geometrical structure@2#. Here we show that our re
sults for the dynamics at the onset of chaos in unimo
maps constitute an unequivocal proof of the universal va
ity of the nonextensive statistics at such critical points.

In fact, at the chaos threshold~as well as at other critica
points of the map! the Lyapunov exponentl1 vanishes, and
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the sensitivity to initial conditionsj t for large iteration time
t ceases to obey exponential behavior, exhibiting instea
power-law behavior@4#. In order to describe the dynamics
such critical points, theq-exponential expression

j t5expq~lqt ![@12~q21!lqt#21/(q21), ~1!

containing aq-generalized Lyapunov coefficientlq , has
been proposed@5#. This expression is based on the nonexte
sive entropy of Tsallis@2#. In addition to this, generalization
for the Kolmogorov-Sinai entropyKq and for the Pesin iden
tity lq5 Kq , lq.0 have also been introduced@5# ~the stan-
dard expressions are recovered whenq→1). Several recent
studies@5–8# that probed numerically the onset of chaos
the logistic map and its generalization to nonlinearityz.1
@ f m,z(x)[12muxuz,21<x<1#, have revealed a series o
precise connections between the Tsallis entropic indexq and
the map basic parameters. Here we present RG analy
results that corroborate the previously known value ofq at
m` for z52, and also determinelq for the first time.

To state our results more precisely, we recollect the f
lowing properties. The logistic map exhibits several types
infinite sets of critical points that appear as its control para
eter m varies; these correspond, amongst others, to per
doubling and chaotic-band-splitting transitions@3#. The accu-
mulation point of the period doublings and also of the ba
splittings is the Feigenbaum attractor that marks the thre
old between periodic and chaotic orbits, atm`

51.401 15 . . . . The locations of period doublings~at m

5mn,m`) and band splittings~at m5m̂n.m`) obey, for
large n, power laws of the formmn2m`;d2n and m`

2m̂n;d2n, whered54.6692 . . . is one of the twoFeigen-
baum’s universal constants. For our use below, we recall
the sequence of parameter valuesm̄n employed to define the
diametersdn of the bifurcation forks that form the period
doubling cascade sequence. Atm5m̄n the map displays a
‘‘superstable’’ periodic orbit of length 2n, which contains the
point x50. For largen, the distances tox50 of the iterate
positions in such 2n cycle that are closest tox50, dn

[ f m̄n

(2n21)(0), have constant ratios,dn /dn1152a, where
©2002 The American Physical Society04-1
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a52.502 90 . . . is thesecond of the Feigenbaum constan
A set of diameters with scaling properties similar to those
dn can also be defined for the band splitting sequence@3#.
For clarity of presentation of our results we shall only u
absolute values of positions, so that the dynamics of iter
do not carry information on the self-similar properties
‘‘left’’ and ‘‘right’’ symbolic dynamic sequences@3#. This
choice does not affect results of the sensitivity to initial co
ditions. Below,dn meansudnu.

The main points in the following analysis are as follow
~1! The iteratesat m` follow trajectories that proceed in

concerted manner according to the entire period-doub
cascade, which takes place form,m` . The positions of the
trajectories are given, in fact, in terms of the diamet
dn(m̄n) of the 2n supercycles.

~2! As a consequence, the sensitivity to initial conditio
also evolves in agreement with the period-doubling casca

~3! The bounds, or envelopes, as well as other monoto
subsequences, of both a single-trajectoryxt and of the sensi-
tivity to initial conditions j t have precisely the form of aq
exponential. For j t we have q512 ln 2/lna and lq
5 ln a/ln 2.

~4! These results are obtainable via the fixed-point so
tion g(x) of the RG-doubling transformation, consisting
functional composition and rescaling,Rf (x)[a f „f (x/a)….

To begin, we show in Fig. 1 the absolute values of
positions of two trajectories of the logistic map with initi
conditionsx050 andx05d.531022 for the first ten itera-
tions t. For t51 the positions arex151 and x1.1 –3.5
31023, and it can be observed that the difference betw
the two positions at timest52, 4, and 8 grows progres
sively. In Fig. 2 we show the same first trajectoryx050 and
a second onex05d.1024, up to t51000. In the logarith-
mic scales it can be clearly appreciated that they consis
interwoven monotonic position subsequences with pow
law decay. We are interested in the position subseque
that are generated by the time subsequencest52n12n2k,

FIG. 1. Absolute values of positions of the first ten iterationst
for two trajectories of the logistic map with initial conditionsx0

50 ~empty circles! and x05d.531022 ~full circles!. Plotted
quantities are dimensionless.
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k50,1, . . . . As weshow below, the values for the trajector
subsequencet52n, with x050, are asymptotically given by
xt5dn , n>0. More generally, each position subsequen
t52n12n2k, obtained with x050, is given by

g(2k11)(0)dn
k , wheredn

k[ f m̄n

(2n2k21)(0) andn>k. The itiner-

ary of the iterate starting atx050 can be clearly observed i
Fig. 2. The position approaches the originx050 progres-
sively asn increases every time thatt52n, but in between
the values 2n and 2n11 it returns in an oscillatory manne
towardsx151, repeating twice the positions visited in th
previous cycle between 2n21 and 2n and introducing a new
position between these two subcycles. For smalln the posi-
tions are approximately repeated, but they become accura
reproduced asn increases. The whole time series has t
period-doubling structure.

To interpret the dynamics in Figs. 1 and 2 in terms of t
RG transformation, we considerR applied n times to the
fixed-point mapg(x), i.e.,

g~x!5R(n)g~x![ang(2n)~x/an!. ~2!

We determine the trajectory positions at timest52n, with
x050. Sinceg(0)51, we haveg(2n)(0)5a2n, and because
dn /dn115a with d051 implies dn5a2n, we also have
dn5g(2n)(0). Thus, we obtain the diametersdn to be the
positionsx2n. This result can be expressed as aq exponential
if we shift the time variable by one unit,t52n21, and re-
arrangea2n as (11t)2 ln a/ln2. We obtain

xt5expQ~LQt !, ~3!

with Q511 ln2/lna and LQ52 ln a/ln 2. Other position
subsequencest52n12n2k can be put in the form ofq ex-
ponentials with the same values ofQ andLQ .

The expression for the sensitivity to initial conditions c
be derived with the use of the following approximate pro
erty ~that becomes asymptotically exact in the limitn→`):

FIG. 2. Absolute values of positions of the first 1000 iterationt
for two trajectories of the logistic map with initial conditionsx0

50 ~empty circles! and x05d51024 ~full circles! in logarithmic
scales. The power-law decay of several time subsequences ca
clearly appreciated.
4-2
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g(2n)~dj !5
1

an
2

m`

a2 j 2n
5dn2m`d2 j 2n ,n< j . ~4!

To prove the above, note first thatg(2n)(dj )5g(2n12 j )(0)
5a2ng(2 j 2n11)(0), or, since g(2 j 2n11)(0)5g(dj 2n),
g(2n)(dj )5a2ng(dj 2n). The preceding equality, togethe
with g(dj 2n)512m`dj 2n

2 512m`a2n22 j , yields Eq. ~4!.

Now, the distance between positionsx2n(dj )5g(2n)(dj ) and
x2n(di)5g(2n)(di) at timet52n can be written with the use
of Eq. ~4! as x2n(dj )2x2n(di)5@x20(dj )2x20(di)#an or
with use of the shifted time variablet52n21 as

xt~dj !2xt~di !5@x0~dj !2x0~di !#a
n. ~5!

The sensitivity to initial conditionsj t is defined as

j t[ lim
uDx0u→0

uxt~dj !2xt~di !u/ux0~dj !2x0~di !u, ~6!

where limuDx0u→0 is equivalent to lim
i , j→`,iÞ j

. j t can then be

written, considering thatan5(11t) ln a/ln2, as theq exponen-
tial

j t5expq~lqt !, ~7!

where q512 ln 2/lna and lq5 ln a/ln 2. Notice thatq52
2Q as expq(y)51/expQ(2y). The previous construction ap
plies strictly to initial positions that lie on the attractor; ne
ertheless, we remark that all other positions tend to the
tractor with a power-law behavior~see Refs.@10,11#!, so that
after an initial transient their dynamics becomes practica
indistinguishable from the situation we describe here. In F
3 we show theq logarithm of j t vs t ~with q512 ln 2/lna
50.2445 . . . ), from a numerical simulation of two trajecto
ries with initial conditionsx050 andx05d.1028. The re-
sult is a straight line with slope very close tolq5 ln a/ln 2
51.3236 . . . . This corroborates the RG prediction@the q
logarithm, lnqy[(y12q21)/(12q), is the inverse of expq(y)].

Interestingly, bothxt /x0 andj t can be seen to satisfy th
dynamical fixed-point relationsh(t)5ah„h(t/a)… with a
521/(Q21) anda521/(q21), respectively. In relation to this
we note that the static fixed-point solutionf * (x)/x to the
Feigenbaum RG recursion relation for the case of the tan
bifurcation, obtained by Hu and Rudnick@3,9# to study the
intermittency transition in thez-logistic map, has the form o
a q exponential withq52. This has been pointed out re
cently @10,11#, where in addition it has been shown that th
solution applies too, but now withq53, to the period-
doubling transitions that take place atmn,m` . We recall
that, for the transition to periodicity of ordern, the RG trans-
formation is applied to thenth compositionf (n) of the origi-
nal map in the neighborhood of one of then points tangent to
the line with unit slope, and a shift is made of the origin
coordinates to that point. The RG fixed-point map isf * (x)
5x expq(uxq21), whereu is the leading expansion coefficien
of f (n) and where the recursion relation is satisfied w
a521/(q21). In the neighborhood of the intermittency an
period-doubling transitions the time evolution of iterates f
04510
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low monotonic paths set by the form of the map itself, a
are alsoq exponentials. For these types of critical points t
static and dynamic properties are simply related and o
expressions of the same form@10,11#. Not only the entropic
index q can be plainly identified, but theq-generalized
Lyapunov coefficientlq turns out to be given by the expan
sion coefficientu. Unequivocal corroboration of these resu
has been obtained recently@11#.

At the onset of chaos, both static and dynamical prop
ties are more complex. The celebrated RG fixed-point m
static solution is obtained as a power series of a smo
unimodal trascendental function, the universaln→` limit of

(2a)nf m̄n11

(2n)
„x/(2a)n

…; likewise, the fractal dimension o

the attractordf50.538 045 143 . . . is obtained considering
also the samen→` limit on the positions of the 2n-cycles
@3,12#. As we have seen here, the multifractal attractor atm`

imprints an involved structure into the time evolution of th
iterates, which can be resolved in terms of simpler mo
tonic time subsequences. Remarkably, these subseque
and the sensitivity to initial conditionsj t are analytically
reproduced by the same RG transformation originally
plied to describe static properties. These quantities evolv
universalq exponentials, withq andlq simply expressed in
terms ofa. We observe then a connection between dynam
properties of a strange attractor at the edge of chaos, suc
theq-generalized Lyapunov coefficient and the static prop
ties, described by the set of distancesdn

k that make up this
multifractal; this is in accordance with the Kaplan-York
conjecture@3#.

Under some conditions, exemplified here by critic
points in nonlinear maps, the Lyapunov exponents of a s
tem that measure the strength of phase space mixing va
When this happens, dynamic processes become sluggis
exploring their permissible configurations and may be

FIG. 3. Theq logarithm of sensitivity to initial conditionsj t vs
t, with q512 ln 2/ln a50.2445 . . . and initial conditions x050
and x05d.1028 ~circles!. The full line is the linear regression
y(t). As required, the numerical results reproduce a straight
with a slope very close tolq5 ln a/ln 251.3236 . . . .
4-3
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pable of covering only a small fraction of the available pha
space, even in the limitt→`. This fraction may have a
fractal dimension smaller than the total dimension of ph
space. These are thought to be the conditions for failure
BG statistics and applicability of its nonextensive gener
zation @2#, and the significance of our analytically backe
results with no approximations is a contribution towards
clarification of this issue. At the onset of chaos of unimod
maps, the reduced phase subspace is represented b
strange attractor, a Cantor subset of the interval21<x
<1. It is important to point out that in this case the perm
sible positions~configurations! are asymptotically confined
by the attractor and this acts as an inescapable barrie
movement to other locations. By construction, the dynam
at the onset of chaos, as well as those restricted to the ne
borhood of the intermittency transitions, describe a pur
nonextensive regime. It should be mentioned that our an
sis does not consider the access of trajectories to an adja
or neighboring chaotic region, as in the setting of Re
@13,14# or that in conservative maps@15#. Hence there is no
feedback vehicle for a crossover from a nonextensive reg
with vanishing ordinary Lyapunov exponent to an extens
regime with a positive one at sometcross as t→`.

Clearly, our findings have a wide range of validity, as th
apply to all dissipative systems in the Feigenbaum univer
ity class. It might be possible to observe analogous beha
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at chaos boundary criticalities in other classes of dynam
systems, such as period doubling in bimodal@16# and other
multiparameter maps@17#, and quasiperiodicity in dissipative
systems@18#. More generally, the properties discussed h
are likely to hold strictly for other types of systems or sit
ations that possess equivalent phase space limitations. T
systems for which experimental and numerical eviden
have accumulated on BG statistics inadequacy and nonex
sive statistics competency@2# warrant examination. The
more that is learned on mechanisms and circumstances
ing to a hindered phase space, the clearer the physical un
standing of the applicability of the nonextensive theory w
become.
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